中央差速器作用是什么?
多轴驱动的汽车,各驱动桥间由传动轴相连。为使各驱动桥有可能具有不同的输入角速度,以消除各桥驱动轮的滑动现象,可以在各驱动桥之间装设中央差速器,也称为轴间差速器。
中央差速器分为哪几类?
中央差速器的种类主要有普通式中央差速器、多片离合器式中央差速器、 托森式中央差速器、 粘性联轴节式中央差速器。
普通式中央差速器
普通式中央差速器就(open differential)就是采用普通对称圆锥齿轮结构、可以在汽车转弯时正常工作的差速器,在其行星齿轮组没有设置任何锁止装置。假如一辆四驱车配备了前中后三个开放式差速器,那么如果其中一个轮子打滑,那么这个车的全部动力都会浪费在这个车轮上,而其余三个车轮则无法到的动力。在越野车领域,开放式差速器会影响非铺装路面的脱困性。
优点:没有特别的优点,因为差速是汽车正常行驶的必备条件。
缺点:在越野车领域,开放式差速器会影响非铺装路面的脱困性。
多片离合器式中央差速器
多片离合器式差速器依靠湿式多片离合器产生差动转矩。这种系统多用作适时四驱系统的中央差速器使用。其内部有两组摩擦盘,一组为主动盘,一组为从动盘。主动盘与前轴连接,从动盘与后轴连接。两组盘片被浸泡在专用油中,二者的结合和分离依靠电子系统控制,基本结构如图1所示。
在直线行驶时,其前后轴的转速相同,主动盘与从动盘之间没有转速差,此时盘片分离,车辆基本处于前驱或后驱状态,可达到节省燃油的目的。在转弯过程中,前后轴出现转速差,主、从动盘片之间也产生转速差。但由于转速差没有达到电子系统预设的要求,因而两组盘片依然处于分离状态,此时车辆转向不受影响。
当前后轴的转速差超过一定限度,例如前轮开始打滑,电控系统会控制液压机构将多片离合器压紧,此时主动盘与从动盘开始发生接触,类似离合器的结合,扭矩从主动盘传递到从动盘上从而实现四驱。多片摩擦式限滑差速器的接通条件和扭矩分配比例由电子系统控制,反应速度快,部分车型还具备手动控制的“LOCK”功能,即主、从动盘片可保持全时结合状态,功能接近专业越野车的四驱锁止状态。但摩擦片最多只能传递50%的扭矩给后轮,并且高强度的使用会使摩擦片过热而失效。
优点:反映速度很快,可瞬间结合;多数车型都是电控结合,无需手动控制。
缺点:最多只能将50%的动力传递给后轮,高负荷工作时容易过热。
托森式中央差速器
托森中央差速器(Torsen differential)的核心是蜗轮、蜗杆传动系统,如图2所示。正是它们的相互啮合互锁以及扭矩单向地从蜗轮传送到蜗杆齿轮的构造实现了差速器锁止功能,这一特性限制了滑动。在弯道正常行驶时,前、后差速器的作用是传统差速器,蜗杆齿轮不影响半轴输出速度的不同,如车向左转时,右侧车轮比差速器快,而左侧速度低,左右速度不同的蜗轮能够严密地匹配同步啮合齿轮。此时蜗轮蜗杆并没有锁止,因为扭矩是从蜗轮到蜗杆齿轮。而当一侧车轮打滑时,蜗轮蜗杆组件发挥作用,通过托森差速器或液压式多盘离合器,极为迅速地自动调整动力分配。
简单地说,托森差速器就是一个全自动纯机械差速器,即不需要人为控制+100%可靠的+传动直接的限滑差速器,从某个角度来说是一种很均衡的设计。
优点:能够在瞬间对驱动轮之间出现的阻力差提供反馈,分配扭矩输出,而且锁止特性是线性的,能够在一个相对宽泛的扭矩输出范围内进行调节。
缺点:没有两驱状态;差速器限滑能力有限,动力无法完全传递到有某一车轮。
粘性联轴节式中央差速器
粘性联轴节的工作原理,有点类似于多片离合器。在输入轴上装有许多内板,插在输出轴壳体内的许多外板当中,并充入高粘度的硅油,如图3所示。输入轴与前置发动机上的变速分动装置相连,输出轴与后驱动桥相连。 在正常行驶时,前后车轮没有转速差,粘性联轴节不起作用,动力不分配给后轮,汽车仍然相当于一辆前轮驱动汽车。
当汽车前后车轮出现较大的转速差。粘性联轴节的内、外板之间的硅油受到搅动开始受热膨胀,产生极大的粘性阻力,阻止内外板间的相对运动,产生了较大的扭矩。这样,就自动地把动力传送给后轮,汽车就转变成全轮驱动汽车。
优点:尺寸紧凑、结构简单、生产成本低。
缺点:缺点是反应速度慢,扭矩分配比例小,结合和分离不可手动控制,高负荷工作时因为过热可能会失效。
免责声明:本文不构成任何商业建议,投资有风险,选择需谨慎!本站发布的图文一切为分享交流,传播正能量,此文不保证数据的准确性,内容仅供参考
关键词: 中央差速器作用是什么 中央差速器分为哪几类